

The role and challenges of increasing vitamin D in the food supply.

Dr Hannah Theobald, Senior Nutritionist, GlaxoSmithKline

~ 90% of vitamin D is derived from sunshine

\sim 10% of vitamin D is derived from food

Number of factors limit capacity for vitamin D synthesis following UVB exposure....

- Skin pigmentation
- Age
- Cloud cover
- Pollution & ozone

- Clothing
- Sunscreen
- Sun avoidance
- Adiposity

Potential for exposure often limited in India!

~ 90% of vitamin D is derived from sunshine

\sim 10% of vitamin D is derived from food

Problem?

Vitamin D (serum 250HD) deficiency and sufficiency

- <12.5nmol/L = severe deficiency (rickets)</p>
- < 25nmol/L = deficiency</p>
- < 50 nmol/L = insufficiency</pre>
- Optimal concentration 75-100 nmol/L

Vitamin D status: Indian Studies

	Population	Age	Mean Vitamin D status
Marwaha et al, 2005	LSES School Girls Delhi		34.6 ± 17.43 nmol/l
	USES School Girls Delhi		29.4 ± 12.7 nmol/l
		-	
Zargar et al, 2007	Men, Kashmir Valley		37.7 ± 30 nmol/l
	Women, Kashmir Valley		13.8 ± 11 nmol/l
	•		
Goswami et al, 2008	Rural Males, Delhi		44.2 ± 24.2 nmol/l
	Rural Females, Delhi		26.9 ± 15.9 nmol/l
		`	
Sahu et al, 2008	Pregnant women, summer, Lucknow		55.5 ± 19.8 nmol/l
	Pregnant women, winter, Lucknow		27.3 ± 12.3 nmol/l
	Girls, winter		31.3 ± 13.5 nmol/l
	1	`	
Goswami et al, 2000	Pregnant women, Summer, Delhi		21.9 ± 10.73 nmol/l
	New Born, Summer, Delhi		16.72 ± 4.99 nmol/l
		-	
Goswami et al, 2000	Soldiers, males, winter, Delhi		41.17 ± 11.73 nmol/l
	Phys and nurses, winter, Delhi		17.97 ± 7.98 nmol/l

Vitamin D status: India

Population	Vitamin D status					
Children and Adolescents	Numerous studies in north and south India in this age group have shown that 15 to 65% of the groups studied have varying degrees of Vitamin D deficiency or insufficiency					
Middle age	RineLoopulation in this are group have better vitamin D status as compared to the utbar spud					
Post menopausal women	There are studies that in the provide by vitamin D status in this population					
Pregnant women	Studies have shown that pregnant women have by vitamin D status.					
Geographic Locations	Studies from the Kashmir Valley have shown lower Vitamin D status					
Sun Exposure	Indian paramilitary forces had better levels as compared to the civilian counterparts					

Food and beverage fortification

Dietary supplements

Advice on sun exposure

Food fortification

ADVANTAGES

- Helps ensure minimum dietary recommendations are met & can improve health
- Important tool to help prevent and treat nutrient deficiency
- Can prevent large scale deficiency disease

CONSIDERATIONS

- Food must be consumed by significant proportion of the population
- Must not interfere with product quality

DISADVANTAGES

Can be costly

Global successes with vitamin D fortification

Milk: a case study

Fortification of milk is common practice in some countries

- e.g. Canada 4µg vitamin D/ 100mL
- e.g. Finland 0.5µg vitamin D/ 100mL
- e.g. US 0.9-1.3 μg vitamin D/ 100mL

 Small number of studies have assessed effect of vitamin D fortified milk on serum 25OHD

- 5/5 studies reported a benefit (see O'Donnell et al., 2008. AJCN)
- but large variation in dose, duration and numbers
- greatest benefit seen in those with lowest status initially
- increment of supplementation: each 1µg \uparrow intake \rightarrow > 1nmol/L \uparrow in 25OHD concentration

Milk: a case study

	Study and location	and location Characteristics				Dietary Source			Absolute mean change in serum calcidiol		
		Population	IG n	CG N	Age (years)	IG	CG	Daily vitamin D intake from fortified food (μg)	Duration	IG (nmol/l)	CG (nmol/l)
*	Chee <i>et al</i> ., (2003) Malaysia (3 ° 7' N)	Postmenopau sal women	91	82	59 ± 3	Skimmed milk powder	Usual diet	IG: 10	24 months	17.3 ± 13.3	2.8 ± 13.1 ¹
	Daly <i>et al</i> ., (2006) Australia (37 ° 47' S)	Free living men ≥ 50 years	76	73	61.9 ± 7.7	Fortified milk	Usual diet	IG: 20	24 months	4.2 ± 20.0	14.4 ± 20.3
*	Keane <i>et al.</i> , (1998) Ireland (53 ° 22' N)	Elderly persons	18	24	78.1	Fortified milk	Unfortified milk	IG: 5 CG:0.1	12 months	22.25 ± 10.90	6.75 ± 10.92²
	Lau <i>et al</i> ., (2001) China (22 ° 17' N)	Postmenopau sal women	95	90	56.9	Milk powder	No interventio n	IG:6	24 months	23.2± ¹	Not estimable
	McKenna <i>et al.</i> , (1995) Ireland (53 ° 22' N)	Younger adults	52	50	22.6 (17-54) ³	Fortified skimmed milk	Unfortified skimmed milk	IG: 3.4 CG:0.9	5 months	15 ± 21.1	31.0 ± 24.2 ¹

Increase to greater than 70nmol/L observed

Fortification is effective – so what level?

- First need to better understand vitamin D status of the population and identify at risk groups of the population
- Also need to determine dietary intakes in population as a whole
- Has been suggested that ideal vitamin D status is 25OHD of 70-100nmol/L
- What is the gap in India?
- What level of dietary intake of vitamin D would ensure this level met?

Dietary recommendations for vitamin D

- ICMR no RDA
- Codex NRV 5µg/day
- EU ranges from 0-15 μg/day
- USA DRI ranges from 5-10µg/day IOM currently reviewing DRI for vitamin D. Verdict due May 2010
- Argued by some academics that intakes should be much higher than currently recommended by most countries
- 20-25 µg/day sufficient to maintain serum 25OHD at 70-100nmol/L in adult Caucasians
- Is this transferable to the Indian population?? Research needed! Then can set RDA

Food fortification

- For national/regional fortification, food must be consumed by significant proportion of the population
 - WHO food should provide ~ 97.5% of the population with an intake that meets their nutrient needs without exceeding tolerable upper intake level
 - At least 50% of the population must consume fortified food
 - Doesn't hold true for vitamin D!
- For private company any appropriate food could be fortified
- Fortification must not interfere with product quality (e.g. shelf life, taste, odour and appearance)
- Must be bioavailable source of nutrient

Foods which can be fortified & level of fortification

- Limited number of foods can be fortified:
- Fruit juice
- Milk & dairy products
- Margarine & vegetable oils
- Health food drinks
- Breads, cereals & cereal bars
- Level of fortification would depend on what food is fortified
- Average consumption of food to be fortified needs to be determined
- Intakes of vitamin D in the population need to be understood too
- Effects of food fortification need to be monitored

Issues associated with vitamin D fortification

- Technical issues
 Regulatory issues
- Safety

Technical issues

- Vitamins degrade, vitamin D fairly stable when compared to others – certain other nutrients promote such degredation
- Both D₂ and D₃ are susceptible to autoxidation & photoxidation at high humidities & temperatures: lipid soluble antioxidants like BHA, BHT often incorporated to promote stability
- Large amount of data suggests D₂ to be comparatively less stable, less bioavailable and less potent than D₃.
 However, recently this thought has been questioned.

Technical issues continued

- Appropriate overages may need to be added, depending on shelf life & formulation. Impact on costing & feasibility
 - The overages for vitamin D would range from 10-50 % depending on the following various factors like:
 - Product format (powders, drinks, bars etc)
 - Water activity & moisture levels in the product
 - Extent & level of exposure to oxygen
 - Presence of pro-oxidants like minerals in the product
 - Type of packing material used to pack the product
- Difficult to analyse no universal method. Low amounts added to food; can be difficult to detect

Regulatory issues

- Vitamin D fortification permitted in foods
- No upper limit to fortification unlike that proposed in EU
- Use of antioxidants has regulatory implications

Safety

- Excess synthesis due to sunlight does not occur
- Excess consumption → hypervitaminosis D (400-1250nmol/L) – infants at high risk
- UK guidance level 25µg/day
- EU UL & US TUIL = 50 μg/day
- Argued that values based on old data
- 'Toxicity occurs at > 500nmol/L ≡ 500 µg/day' Heaney (2008)
- Vieth (1999) argues toxicity at >1000 µg/day
- Hathcock et al (2007) safe upper level for adults at 250 µg/day

Conclusions

- Vitamin D status of the Indian population a concern in parts
- Exposure to UV not sufficient to maintain status in some parts
- Natural dietary sources not acceptable to population on the whole
- Action needs to be taken to remedy
- Food fortification can form part of the solution
- But is only part of the solution; need integrated public health strategy to include advice on sensible UV exposure and advice on consumption of vitamin D fortified foods.
- More research needed to understand:
 - Vitamin D status of population as a whole & specific groups
 - Vitamin D intake of population & specific groups
 - Need to determine appropriate vitamin D intake to meet desirable status

Conclusions

- An RDA for vitamin D should be set in India
- What this level should be, based on improving vitamin D status, is not currently known and requires further research
- In terms of food fortification
 - Number of candidate foods could be fortified
 - Level of food fortification depends on vehicle
 - But food distribution patterns in India not uniform and therefore may limit success
 - Private label fortification can help

Thank you!

